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In this article we consider the polymorphic type checking of an imperative language� Our lan�
guage contains variables� �rst�class references �pointers�� and �rst�class functions� Variables� as
in traditional imperative languages� are implicitly dereferenced� and their addresses �L�values� are
not �rst�class values� Variables are easier to type check than references and� in many cases� lead
to more general polymorphic types� We present a polymorphic type system for our language and
prove that it is sound� Programs that use variables sometimes require weak types� as in Tofte�s
type system for Standard ML� but such weak types arise far less frequently with variables than
with references�
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�� INTRODUCTION

Polymorphic type checking of a language with �rst�class references �pointers� is a
di�cult problem� as can be seen by the many type systems proposed for typing ref�
erences in Standard ML �Damas 	
��
 Greiner 	

�
 Hoang et al� 	

�
 Leroy 	

�

Leroy and Weis 	

	
 Talpin and Jouvelot 	

�
 Tofte 	

�
 Wright 	

��� But
many imperative programs do not require the power of �rst�class references�they
merely manipulate values� other than pointers� as the contents of local variables�
Unfortunately� if local variables must be created using �rst�class references� then
whatever mechanism is used to enforce the correct typing of references is likely to
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Polymorphic Typing of Variables and References � ���

adversely a�ect the typing of programs that really only need variables� Thus� it is
bene�cial to introduce an additional letvar construct to allocate variables� which
are implicitly dereferenced and whose addresses �L�values� are not �rst�class values�

Aside from their typing bene�ts� variables are also of interest because their im�
plicit dereferencing is a syntactic convenience� and because they are at the core of
mainstream imperative languages�
The idea of including variables in a polymorphic language is not new� In fact�

Edinburgh LCF ML �Gordon et al� 	
�
� had a letvar construct� which it called
letref� But it did not have �rst�class references� and according to Tofte �	

��� its
type system was never proved sound�

�� AN INFORMAL DESCRIPTION OF THE TYPE SYSTEM

The language we consider is the core ML of Damas and Milner �	
��� together with
�rst�class references� created by ref� variables� created by letvar� and imperative
constructs such as while loops� The construct letvar x �� a in b binds x to a
new cell initialized to the value of a� The scope of the binding is b� and the lifetime
of the cell is unbounded� Conversion of L�values to R�values is implicit� so that
letvar x �� e in x is equivalent to e�
The types of our system are strati�ed into three levels� There are the ordinary

� �data types� and � �type schemes� type levels of Damas and Milner�s system
and a new level called phrase types containing � types and types of the form � var

for variables� Unlike references� variables are not �rst�class values� As in Tofte�s
system for Standard ML �Tofte 	

��� type variables are partitioned into weak and
strong variables�� Strong type variables are written � and weak ones �� A weak
type variable cannot be instantiated with a type containing strong type variables�
As in Tofte�s system� a weak type variable can be generalized only when it appears
in the type of a syntactic value� that is� an identi�er� a literal� or a ��abstraction�

Because variable addresses are not �rst�class values� it is easier to keep track
syntactically of operations on variables than operations on references� As a result�
many useful functions that use letvar can be given fully polymorphic types� For
example� imperative list reversal can be de�ned as

fun irev l � letvar a �� l in

letvar b �� �� in

while not �null a� do

� b �� �hd a� �� b�

a �� tl a��

b

end end

Two local variables a and b are declared� yet the function is assigned fully poly�
morphic type �� � � list � � list in our system� Thus irev�� is a polymorphic list
of type �� � � list� Consider a de�nition of irev in Standard ML�

fun irev l � let val a � ref l in

let val b � ref �� in

�Tofte actually calls them imperative and applicative variables� respectively�
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��� � Geo�rey Smith and Dennis Volpano

while not �null �	a�� do

� b �� �hd �	a�� �� �	b��

a �� tl �	a���

	b

end end

Now the use of local variables is re�ected in the type of irev� Standard ML would
give it type � � � � list � � list� where � is an imperative type variable� and
Standard ML of New Jersey would give it type ��� � �� list � �� list where �� is
a weak type variable� The weak variable indicates that applying irev once may
create a reference whose type involves �� In each case� consequently� irev�� is not
a polymorphic list�
One has the option of de�ning irev in our language using ref instead of letvar�

but this would needlessly constrain polymorphism� Our system would then give it
the Standard ML type � � � � list � � list� and the application irev�� would no
longer be polymorphic� In fact� if one always uses let and ref in our system rather
than letvar� then our system �degenerates� to Tofte�s system for Standard ML�
Our system also does well on programs that cause problems for the �syntactic

values� type system advocated by Wright �	

��� Consider makeCountFun which
takes a function f as input and returns both a counting version of f and a function
to read the counter�

fun makeCountFun f � letvar x �� 
 in

� fn z �� x �� x � 
� f z�

fn �� �� x�

end

Our system gives makeCountFun type

��� � � ��� �� � ��� �� � �unit � int��

and an application such as makeCountFun hd is polymorphic� If makeCountFun is
written using let and ref� then makeCountFun hd is also polymorphic in Tofte�s
system� But in Wright�s system� makeCountFun hd is monomorphic because only
syntactic values are polymorphic� and a function application is not a syntactic value�

Programs that use letvar but not ref may still require weak types� The rule
is that a letvar�bound identi�er must be given a weak type if it occurs in a ��
abstraction within its scope� This rule comes into play when functions create �ob�
jects� or �own variables�� For example� consider a function that creates a stack
object with push and pop operations accessing a shared stack�

fun makestack x �

letvar stk �� x in

� fn v �� stk �� v �� stk�

fn �� �� stk �� tl stk�

end

It is unsound to give makestack the strong polymorphic type

�� � � list � ��� unit� � �unit � unit�
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Polymorphic Typing of Variables and References � ���

because� if the application makestack �� were polymorphic� the resulting push op�
eration could be called with values of di�erent types� leading to a nonhomogeneous
stack� In our system� since stk occurs inside a ��abstraction within its scope� it
must be given a weak type� This allows makestack to be given only the weak
polymorphic type

� � � � list � � �� unit�� �unit � unit ��

The ability to give makestack a weak polymorphic type makes our system sub�
stantially better than Edinburgh LCF ML on cases of this kind� In LCF ML� a
letvar�bound identi�er must be given a monotype �i�e�� a type with no variables�
if it is assigned to within a ��abstraction within its scope �restriction �ib �Gor�
don et al� 	
�
� p� �
��� Hence� since stk is assigned to within the push and pop
operations� LCF ML requires stk to be annotated with a monotype� This forces
makestack to be monomorphic�
Finally� typings of purely functional programs in our system are preserved as

they are in the type systems for Standard ML and Standard ML of New Jersey�
No labels or other annotations are required on arrow types as they are in closure
�Leroy and Weis 	

	� and e�ect �Talpin and Jouvelot 	

�
 Wright 	

�� typing�

�� A FORMAL TREATMENT OF THE TYPE SYSTEM

The syntax of our language is given below� Following Tofte �	

��� we distinguish
a subset of the expressions called Values� Evaluating a value does not allocate any
new cells
 this property is exploited by the type system�

�Expressions� e ��� v j l j e� e� j let x � e� in e� j
letvar x �� e� in e� j e� �� e� j
ref e j �e j
e�
 e� j while e� do e� j if e� then e� else e�

�Values� v ��� x j c j r j �x� e

Metavariable x ranges over identi�ers� and metavariable c ranges over literals�
such as true� false� and unit� Metavariables l and r range over variable locations

and reference locations� respectively�� Notice that unlike reference locations� vari�
able locations are not values� The � operator is used to dereference a reference
 it
is similar to � in Standard ML� Finally� we remark that the sequential composition
e�
 e� could be taken as syntactic sugar for let z � e� in e�� where z is new�
The types of the language are strati�ed as follows�

� ��� � j bool j unit j � ref j � � � � �data types�
� ��� �� � � j � �type schemes�
	 ��� � j � var �phrase types�

Metavariable � ranges over type variables� Type variables are partitioned into weak

and strong type variables� written � and � respectively� These variables correspond
to the imperative and applicative type variables respectively of Tofte�s system� We

	Locations will not in fact occur in user programs� They are included as expressions solely for the
purpose of simplifying the semantics� as will become clear in Section ��
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��� � Geo�rey Smith and Dennis Volpano

say a data type � is weak i� every type variable occurring in it is weak� Type � ref

�� var� is the type of reference �variable� locations storing values of type � �
The rules of the type system are formulated as they are in Harper�s system

�Harper 	

�� and are given in Figure 	� It is a deductive proof system used to
assign types to expressions� Typing judgments have the form

�
 
 � e � 	

meaning that expression e has type 	 assuming that the free identi�ers and locations
of e have the types prescribed by 
 and �� respectively� More precisely� metavariable

 ranges over identi�er typings� which are �nite functions mapping identi�ers to
phrase types
 
�x� is the phrase type assigned to x by 
� and 
�x � 	� is a modi�ed
identi�er typing that assigns phrase type 	 to x and assigns phrase type 
�x�� to
any identi�er x� other than x� Metavariable � ranges over location typings� which
are �nite functions mapping locations to data types� The notational conventions
for location typings are similar to those for identi�er typings�

The generalization of a data type � relative to � and 
� written Close�
��� �� is the
type scheme ��� � � � where �� is the set of all type variables occurring free in � but
not in � or in 
� We write � � e � � and Close��� � when 
 � �� A restricted form
of generalization� written AppClose�
� �� �� is de�ned to be the same as Close�
��� �
except that only strong type variables are generalized
 any weak ones remain free�

A substitution is a mapping S from type variables to data types such that if �
is in the domain of S� then S� �� is weak� Substitutions extend homomorphically
to data types�
We say that � � is a generic instance of ��� � � � written ��� � � � � �� if there exists

a substitution S with domain �� such that S � � � �� We extend this de�nition to
type schemes by saying that � � �� if for all � � �� � � implies � � � �
Finally� we write �
 
 � e � � i� �
 
 � e � � whenever � � � �
Rules �L�VAL� and �ASSIGN� should be contrasted with the analogous rules in

Standard ML� In our system� if e � � ref � then �e � � var 
 in Standard ML� �e � � �
In our system� the left�hand side of an assignment must have a type of the form
� var 
 in Standard ML� it must have a type of the form � ref � Hence if x � int ref �
then one increments the cell that x points to by writing

�x �� �x� 	

in our system and

x �� �x� 	

in Standard ML�
We do not adopt Standard ML�s typings of references because this would lead

to ambiguity� For suppose that we had two rules for typing assignments� rule
�ASSIGN� and Standard ML�s rule�

�
 
 � e� � � ref � �
 
 � e� � �
�
 
 � e� �� e� � unit

�

Then the expression

letvar p �� ref � in �x� p �� x
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�IDENT� ��� � x � � ��x� � �

�VAR�ID� ��� � x � � var ��x� � � var

�REFLOC� ��� � r � � ref ��r� � �

�VARLOC� ��� � l � � var ��l� � �

�LIT� ��� � true � bool

��� � false � bool

��� � unit � unit

���INTRO� ����x � ��� � e � �	
��� � �x� e � �� � �	

���ELIM� ��� � e� � �� � �	� ��� � e	 � ��
��� � e� e	 � �	

�LET�VAL� ��� � v � ��� ����x � Close�������� � e � �	
��� � let x � v in e � �	

�LET�ORD� ��� � e� � ��� ����x � AppClose�������� � e	 � �	
��� � let x � e� in e	 � �	

�LETVAR� ��� � e� � ��� ����x � �� var� � e	 � �	
If x occurs in a ��abstraction in e		 then �� is weak


��� � letvar x �� e� in e	 � �	

�R�VAL� ��� � e � � var

��� � e � �

�ASSIGN� ��� � e� � � var � ��� � e	 � �
��� � e� �� e	 � unit

�REF� ��� � e � �� � is weak
��� � ref e � � ref

�L�VAL� ��� � e � � ref

��� � �e � � var

�COMPOSE� ��� � e� � ��� ��� � e	 � �	
��� � e�� e	 � �	

�WHILE� ��� � e� � bool� �� � � e	 � �

��� � while e� do e	 � unit

�IF� ��� � e� � bool� �� � � e	 � �� �� � � e� � �

��� � if e� then e	 else e� � �

Fig� �� Rules of the type system�
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��	 � Geo�rey Smith and Dennis Volpano

in which p has type int ref var would be ambiguous� If x had type int ref � then
the assignment would make p point to a new cell� On the other hand� if x had type
int � then an R�value conversion of p could give it type int ref � and the assignment
would change the contents of the cell to which p points� But with our rules there
is no ambiguity� Just as in C� we write p �� x to make p point to a new cell and
�p �� x to change the contents of the cell to which p points�

Note also how the type strati�cation and typing rules force variables to be implic�
itly dereferenced� except when they occur as the left�hand side of an assignment�
Consider� for example� the typing of letvar x �� e� in e�� Rule �LETVAR� forces
e� to be given a data type ��� not a phrase type� So if e� is x �with type� say� �� var ��
then we are forced to use rule �R�VAL� to derive the typing x � �� before we can
type the entire letvar� Indeed� one can readily see that the only expressions that
can get types of the form � var are identi�ers� variable locations� and expressions
of the form �e�

�� SEMANTICS AND SOUNDNESS

In this section� we establish the soundness of our type system using the framework of
Harper �	

��� who built upon the earlier work of Tofte �	

��� Wright and Felleisen
�	

��� and Leroy and Weis �	

	��

First we give a structured operational semantics for our language� An expression
is evaluated relative to a memory �� which is a �nite function from locations to
values� The contents of a location l � dom��� is the value ��l�� and we write
��l �� v� for the memory that assigns value v to location l� and value ��l�� to a
location l� 	� l� Note that ��l �� v� is an update of � if l � dom��� and an extension

of � if l 	� dom����

Our evaluation rules are given in Figure �� They allow us to derive judgments of
the form

� � e
 v� ��

which is intended to assert that evaluating closed expression e in memory � results
in value v and new memory ��� We write �e��x�e to denote the capture�avoiding
substitution of e� for all free occurrences of x in e� The use of substitutions in rules
�APPLY�� �BIND�� and �BINDVAR� allows us to avoid environments and closures
in the semantics� so that the result of evaluating an expression is just another
expression�

We now turn to soundness� The basic idea is to show that if � e � � and � e 

v� ��� then � v � � � a property called subject reduction� But since e can allocate
locations and since these locations can occur in v� the conclusion must actually be
that there exists a location typing �� such that �� � v � � and such that �� � ��� The
latter condition asserts that �� is consistent with ��
 more precisely� we say that
� � � if dom��� � dom��� and for every l � dom���� � � ��l� � ��l��

It is the location typing �� that makes soundness delicate� As observed by Tofte�
we may generalize a type variable � in typing � e � � � only to �nd that � occurs
�free� in ��� and therefore cannot be generalized in typing �� � v � � �
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�VAL� � � v� v� �

�APPLY� � � e� � �x� e�
�� ��

�� � e	 � v	� �	
�	 � �v	�x�e�

� � v� ��

� � e� e	 � v� ��

�BIND� � � e� � v�� ��
�� � �v��x�e	 � v	� �	
� � let x � e� in e	 � v	� �	

�BINDVAR� � � e� � v�� ��
l �� dom����
���l �� v�� � �l�x�e	 � v	� �	
� � letvar x �� e� in e	 � v	� �	

�CONTENTS� � � l� ��l�� �

�UPDATE� � � e� v� ��

� � l �� e� unit� ���l �� v�

� � e� � r� ��
�� � e	 � v� �	
� � �e� �� e	 � unit� �	�r �� v�

�ALLOC� � � e� v� ��

r �� dom����

� � ref e� r� ���r �� v�

�DEREF� � � e� r� ��

� � �e� ���r�� ��

�SEQ� � � e� � v�� ��
�� � e	 � v	� �	
� � e�� e	 � v	� �	

�LOOP� � � e� � false� ��

� � while e� do e	 � unit� ��

� � e� � true� ��
�� � e	 � v� �	
�	 � while e� do e	 � unit� ��

� � while e� do e	 � unit� ��

�BRANCH� � � e� � true� ��
�� � e	 � v� ��

� � if e� then e	 else e� � v� ��

� � e� � false� ��
�� � e� � v� ��

� � if e� then e	 else e� � v� ��

Fig� �� The evaluation rules�
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The approach taken by Tofte �	

��� is to prevent the generalization of any type
variables that may occur in ��� In contrast� our system permits some type variables
that occur in �� to be generalized� For example� an expression such as

letvar x �� � � in x

allocates a location l of type � list
 nevertheless� we are allowed to generalize ��
The reason it is sound to do so is that the expression evaluates to � �� and �since
l does not occur in � �� we do not need the typing of l to derive a type for � �� In
general� our system keeps track of which variable locations may occur in values
and prevents the generalization of type variables that occur in the types of these
locations�
We now proceed with the formal development of the subject reduction theorem�

First we introduce some useful lemmas�

Lemma ��� �Superfluousness�� Suppose that �
 
 � e � � � If l 	� dom���� then
��l � � ��
 
 � e � � and if r 	� dom���� then ��r � � ��
 
 � e � � � Also� if x 	� dom�
��
then �
 
�x � 	� � e � � �

Lemma ��� �Substitution�� If �
 
 � v � � and �
 
�x � �� � e � � � then �
 
 �
�v�x�e � � � Also� if �
 
 � l � � var and �
 
�x � � var � � e � � �� then �
 
 � �l�x�e � � ��

Lemma ��� ���intro�� If �
 
 � e � � and � does not occur free in � or in 
�
then �
 
 � e � �� � ��

The preceding three lemmas are straightforward variants of the lemmas given in
Harper �	

��� We also need another lemma�

Lemma ���� If ��l � � �
 
 � e � � � and l does not occur in e� then �
 
 � e � � ��

Finally� we say that l occurs in the range of � if l occurs in ��l�� for some l� or
in ��r� for some r� We can now give the subject reduction theorem�

Theorem ��	� Suppose that � � e 
 v� ��� � � e � � � � � �� and � assigns weak
types to all reference locations in its domain and to all variable locations that occur
in the range of � or in a ��abstraction in e� Then there exists �� such that � � ���
�� � ��� �� � v � � � and �� assigns weak types to all reference locations in its domain
and to all variable locations that occur in the range of �� or in v�

Proof� The proof is by induction on the structure of the derivation of � � e

v� ��� For brevity� we present only the two most interesting cases� �BIND�� when
e� is not a value� and �BINDVAR��
In the �BIND� case� where e� is not a value� the evaluation must end with

� � e� 
 v�� ��
�� � �v��x�e� 
 v�� ��
� � let x � e� in e� 
 v�� ��

�The same approach is taken by Wright �����
 ����� and SML�NJ �Greiner ���

 Hoang et al�
���
�� but not by Leroy and Weis �Leroy ����
 Leroy and Weis ������
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while the typing must end with

� � e� � ��
�
 �x � AppClose������ � e� � ��
� � let x � e� in e� � ��

�

Also� we have � � �� and � assigns weak types to all reference locations in its domain
and to all variable locations that occur in the range of � or in a ��abstraction in e�
or in e��
By induction� there exists �� such that � � ��� �� � ��� �� � v� � ��� and

�� assigns weak types to all reference locations in its domain and to all variable
locations that occur in the range of �� or in v��
Now to apply induction again we want to show that

�� � �v��x�e� � ���

By Lemma ��	 we have

��
 �x � AppClose������ � e� � ���

so we can apply Lemma ��� to get what we want provided that we can show

�� � v� � AppClose������

Now� applying Lemma ��� to �� � v� � �� we can get �� � v� � AppClose������� but
this is not good enough� because �� may contain free strong type variables that
are not free in �� To proceed� we exploit our knowledge about what locations can
occur in v��
Let ��� be formed by removing from �� any typings l � � such that � is not

weak� By the above use of induction� this process does not remove any typings of
locations that occur in v�� as all such locations have weak types� So by Lemma ����
��� � v� � ��� Hence� by Lemma ���� ��� � v� � AppClose������ since ��� contains no
strong type variables� Lemma ��	 then gives �� � v� � AppClose������ and �nally
by Lemma ��� we get �� � �v��x�e� � ���

By the use of induction above� �� assigns weak types to all reference locations in
its domain and to all variable locations that occur in the range of ��� Furthermore�
if a variable location l occurs in a ��abstraction in �v��x�e�� then either l occurs in
v�� or l occurs in a ��abstraction in e�� In the �rst case� ���l� is weak by the above
use of induction
 in the second case� ��l� is weak by the hypothesis� and so ���l� is
weak since � � ���
Hence we can use induction a second time to show that there exists �� such that

�� � ��� �� � ��� �� � v� � ��� and �� assigns weak types to all reference locations
in its domain and to all variable locations that occur in the range of �� or in v��
Since � � �� � ��� we are done�
As for the �BINDVAR� case� the evaluation must end with

� � e� 
 v�� ��
l 	� dom����
���l �� v�� � �l�x�e� 
 v�� ��
� � letvar x �� e� in e� 
 v�� ��
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while the typing must end with

� � e� � ��
�
 �x � �� var � � e� � ��
If x occurs in a ��abstraction in e� then �� is weak�
� � letvar x �� e� in e� � ��

�

Also� we have � � �� and � assigns weak types to all reference locations in its domain
and to all variable locations that occur in the range of � or in a ��abstraction in e�
or in e��
By induction� there exists �� such that � � ��� �� � ��� �� � v� � ��� and

�� assigns weak types to all reference locations in its domain and to all variable
locations that occur in the range of �� or in v��
Since l 	� dom����� �� � ���l � ����
Since ���l � ��� � l � �� var and �by Lemma ��	� ���l � ���
 �x � �� var � � e� � ��� we

can apply Lemma ��� to get

���l � ��� � �l�x�e� � ���

Also� ���l �� v�� � ���l � ��� by Lemma ��	�
Next� by the use of induction above� ���l � ��� assigns weak types to all reference

locations in its domain and to all variable locations that occur in the range of
���l �� v��� Now suppose that a variable location l� occurs in a ��abstraction in
�l�x�e�� Then either l� occurs in a ��abstraction in e�� or else l� � l and x occurs
in a ��abstraction in e�� In the �rst case� by the hypothesis ��l�� is weak� and so
���l � ����l

�� is weak� In the second case� by the restriction on the �LETVAR� rule�
�� is weak� and so ���l � ����l

�� is weak�
So by a second use of induction� there exists �� such that ���l � ��� � ��� �� � �

��
�� � v� � ��� and �� assigns weak types to all reference locations in its domain and
to all variable locations that occur in the range of �� or in v�� Since � � �� � ���l �
��� � ��� we are done�

Type soundness actually involves more than the subject reduction property� How�
ever� it is straightforward to extend the subject reduction theorem to show that
well�typed programs cannot su�er run�time type errors� This requires an easy
canonical forms lemma about the type system� that tells us that a closed value of
some type has the proper form� For example� a closed value of type � � � � must
be a ��abstraction� Harper �	

 � discusses this more fully�

�� DISCUSSION

One of our primary objectives has been to simplify the types of imperative programs
as much as possible� It is often argued that too much information in types makes
them unsuitable as speci�cations in module interfaces� This has also been a goal
of Wright�s system based on syntactic values� His system is a restriction of Tofte�s
system in that all type variables are considered imperative� regardless of whether
references are used�
 To restore polymorphism in practice� often 
�expansion will
do� However� there are cases when 
�expansion does not work� in particular� when

�Indeed� the technical report �Wright ���
� describing this system would be more accurately titled
�Polymorphism for Imperative Languages without Applicative Types��
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computing polymorphic procedures with imperative features� For example� in his
system� makeCountFun� expressed using let and ref� is e�ectively given type

� �� � � � �� �� � � �� �� � �unit � int��

Consequently� the application makeCountFun hd is not polymorphic� and restoring
it by 
�expansion will not work� since each time the expansion is called a new
counter is created� Wright argues that in practice when polymorphic procedures
are computed� the computation is almost always functional� so polymorphism can
easily be restored by 
 expansion� Even if 
 expansion does work� there is also the
issue of call�by�name ine�ciency as there is in Leroy�s proposal for call�by�name
polymorphism �Leroy 	

��� Shared intermediate polymorphism through partial
application of curried functions is lost� In view of these de�ciencies� our system
with letvar is an attractive alternative� It is relatively simple and greatly reduces
the need for weak types�

Our system is not perfect� however� The restriction on rule �LETVAR� sometimes
forces variables to be given weak types unnecessarily� For example� consider the
following function that computes the Cartesian product of two lists�

fun icart xs ys � letvar a �� xs in

letvar b �� �� in

while not �null a� do

� b �� �map �fn y �� �hd a� y�� ys� � b�

a �� tl a��

b

end end

The mere occurrence of variable a in �fn y �� �hd a� y�� forces it to be given a
weak type� Hence the best type we can give icart is

� �� � � � list � � list � � �� �� list�

even though it should be fully polymorphic�
Similarly� the functional style of programming that codes loops using tail recur�

sion leads our system to assign weak types unnecessarily� This is why we have
included the while loop as a primitive in our language�

We conjecture	 that the restriction in the �LETVAR� rule can be relaxed to

If x is assigned to within a ��abstraction in e�� then �� is weak�

This is similar to Edinburgh LCF�s restriction �ib �Gordon et al� 	
�
� p� �
��
Proving soundness now requires a di�erent strategy than the one used here� because
now variable locations with strong types can occur in values� as in examples like
letvar x �� � � in �y� x�
Under the relaxed restriction� function icart can be fully polymorphic� because

variable a is not assigned to within �fn y �� �hd a� y��� However� even the re�
laxed restriction can force weak types to be introduced unnecessarily� For example�
a faster version of icart can be obtained by eliminating list concatenation�


This conjecture has now been established for a core language with variables but no references
�Volpano and Smith ������
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fun fast icart xs ys � letvar a �� xs in

letvar b �� �� in

while not �null a� do

� map �fn y �� b �� �hd a� y� �� b� ys�

a �� tl a��

b

end end

The relaxed restriction forces both xs and ys to have weak type� although it is safe
for them to have strong type�

�� CONCLUSIONS

The type system presented here is appealing in its combination of expressiveness
and simplicity� It also clari�es the relationship between variables and references�
For example� C has the conversion operator ! for taking the address of a variable
or array element� We can introduce ! by including the typing rule

�
 
 � e � � var

� is weak
�
 
 � ! e � � ref

which is nicely symmetric to rule �L�VAL� �Volpano and Smith 	

 �� Finally� this
work has provided a basis for polymorphic typing in the C programming language
�Smith and Volpano 	

 ��
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